skip to main content


Search for: All records

Creators/Authors contains: "Macfarlane, Amy R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic sea ice. We measured the topography on approximately a 0.5 km2drifting parcel of Arctic sea ice on 42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow accumulation) can be observed for time periods of up to six months. Usingin-situmeasurements, we have validated the vertical accuracy of the alignment to ± 0.011 m. This data collection and processing workflow is the culmination of several prior measurement campaigns and may be generally applied for repeat TLS measurements on drifting sea ice. We present a description of the data, a software package written to process and align these data, and the philosophy of the data processing. These data can be used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they can provide valuable context for co-located measurements.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The microstructure of the uppermost portions of a melting Arctic sea ice cover has a disproportionately large influence on how incident sunlight is reflected and absorbed in the ice/ocean system. The surface scattering layer (SSL) effectively backscatters solar radiation and keeps the surface albedo of melting ice relatively high compared to ice with the SSL manually removed. Measurements of albedo provide information on how incoming shortwave radiation is partitioned by the SSL and have been pivotal to improving climate model parameterizations. However, the relationship between the physical and optical properties of the SSL is still poorly constrained. Until now, radiative transfer models have been the only way to infer the microstructure of the SSL. During the MOSAiC expedition of 2019–2020, we took samples and, for the first time, directly measured the microstructure of the SSL on bare sea ice using X-ray micro-computed tomography. We show that the SSL has a highly anisotropic, coarse, and porous structure, with a small optical diameter and density at the surface, increasing with depth. As the melting surface ablates, the SSL regenerates, maintaining some aspects of its microstructure throughout the melt season. We used the microstructure measurements with a radiative transfer model to improve our understanding of the relationship between physical properties and optical properties at 850 nm wavelength. When the microstructure is used as model input, we see a 10–15% overestimation of the reflectance at 850 nm. This comparison suggests that either a) spatial variability at the meter scale is important for the two in situ optical measurements and therefore a larger sample size is needed to represent the microstructure or b) future work should investigate either i) using a ray-tracing approach instead of explicitly solving the radiative transfer equation or ii) using a more appropriate radiative transfer model.

     
    more » « less
  3. Abstract

    Snow plays an essential role in the Arctic as the interface between the sea ice and the atmosphere. Optical properties, thermal conductivity and mass distribution are critical to understanding the complex Arctic sea ice system’s energy balance and mass distribution. By conducting measurements from October 2019 to September 2020 on the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, we have produced a dataset capturing the year-long evolution of the physical properties of the snow and surface scattering layer, a highly porous surface layer on Arctic sea ice that evolves due to preferential melt at the ice grain boundaries. The dataset includes measurements of snow during MOSAiC. Measurements included profiles of depth, density, temperature, snow water equivalent, penetration resistance, stable water isotope, salinity and microcomputer tomography samples. Most snowpit sites were visited and measured weekly to capture the temporal evolution of the physical properties of snow. The compiled dataset includes 576 snowpits and describes snow conditions during the MOSAiC expedition.

     
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  4. The magnitude, spectral composition, and variability of the Arctic sea ice surface albedo are key to understanding and numerically simulating Earth’s shortwave energy budget. Spectral and broadband albedos of Arctic sea ice were spatially and temporally sampled by on-ice observers along individual survey lines throughout the sunlit season (April–September, 2020) during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The seasonal evolution of albedo for the MOSAiC year was constructed from spatially averaged broadband albedo values for each line. Specific locations were identified as representative of individual ice surface types, including accumulated dry snow, melting snow, bare and melting ice, melting and refreezing ponded ice, and sediment-laden ice. The area-averaged seasonal progression of total albedo recorded during MOSAiC showed remarkable similarity to that recorded 22 years prior on multiyear sea ice during the Surface Heat Budget of the Arctic Ocean (SHEBA) expedition. In accord with these and other previous field efforts, the spectral albedo of relatively thick, snow-free, melting sea ice shows invariance across location, decade, and ice type. In particular, the albedo of snow-free, melting seasonal ice was indistinguishable from that of snow-free, melting second-year ice, suggesting that the highly scattering surface layer that forms on sea ice during the summer is robust and stabilizing. In contrast, the albedo of ponded ice was observed to be highly variable at visible wavelengths. Notable temporal changes in albedo were documented during melt and freeze onset, formation and deepening of melt ponds, and during melt evolution of sediment-laden ice. While model simulations show considerable agreement with the observed seasonal albedo progression, disparities suggest the need to improve how the albedo of both ponded ice and thin, melting ice are simulated. 
    more » « less
  5. Abstract. Data from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition allowed us to investigate the temporal dynamics of snowfall, snow accumulation and erosion in great detail for almost the whole accumulation season (November 2019 to May 2020). We computed cumulative snow water equivalent (SWE) over the sea ice based on snow depth and density retrievals from a SnowMicroPen and approximately weekly measured snow depths along fixed transect paths. We used the derived SWE from the snow cover to compare with precipitation sensors installed during MOSAiC. The data were also compared with ERA5 reanalysis snowfall rates for the drift track. We found an accumulated snow mass of 38 mm SWE between the end of October 2019 and end of April 2020. The initial SWE over first-year ice relative to second-year ice increased from 50 % to 90 % by end of the investigation period. Further, we found that the Vaisala Present Weather Detector 22, an optical precipitation sensor, and installed on a railing on the top deck of research vessel Polarstern, was least affected by blowing snow and showed good agreements with SWE retrievals along the transect. On the contrary, the OTT Pluvio2 pluviometer and the OTT Parsivel2 laser disdrometer were largely affected by wind and blowing snow, leading to too high measured precipitation rates. These are largely reduced when eliminating drifting snow periods in the comparison. ERA5 reveals good timing of the snowfall events and good agreement with ground measurements with an overestimation tendency. Retrieved snowfall from the ship-based Ka-band ARM zenith radar shows good agreements with SWE of the snow cover and differences comparable to those of ERA5. Based on the results, we suggest the Ka-band radar-derived snowfall as an upper limit and the present weather detector on RV Polarstern as a lower limit of a cumulative snowfall range. Based on these findings, we suggest a cumulative snowfall of 72 to 107 mm and a precipitation mass loss of the snow cover due to erosion and sublimation as between 47 % and 68 %, for the time period between 31 October 2019 and 26 April 2020. Extending this period beyond available snow cover measurements, we suggest a cumulative snowfall of 98–114 mm. 
    more » « less
  6. Abstract

    The amount of snow on Arctic sea ice impacts the ice mass budget. Wind redistribution of snow into open water in leads is hypothesized to cause significant wintertime snow loss. However, there are no direct measurements of snow loss into Arctic leads. We measured the snow lost in four leads in the Central Arctic in winter 2020. We find, contrary to expectations, that under typical winter conditions, minimal snow was lost into leads. However, during a cyclone that delivered warm air temperatures, high winds, and snowfall, 35.0 ± 1.1 cm snow water equivalent (SWE) was lost into a lead (per unit lead area). This corresponded to a removal of 0.7–1.1 cm SWE from the entire surface—∼6%–10% of this site's annual snow precipitation. Warm air temperatures, which increase the length of time that wintertime leads remain unfrozen, may be an underappreciated factor in snow loss into leads.

     
    more » « less
  7. Abstract

    The “surface scattering layer” (SSL) is the highly‐scattering, coarse‐grained ice layer that forms on the surface of melting, drained sea ice during spring and summer. Ice of sufficient thickness with an SSL has an observed persistent broadband albedo of ∼0.65, resulting in a strong influence on the regional solar partitioning. Experiments during the Multidisciplinary drifting Observatory for the Study of the Arctic Climate expedition showed that the SSL re‐forms in approximately 1 day following manual removal. Coincident spectral albedo measurements provide insight into the SSL evolution, where albedo increased on sunny days with higher solar insolation. Comparison with experiments in radiative transfer and global climate models show that the sea ice albedo is greatly impacted by the SSL thickness. The presence of SSL is a significant component of the ice‐albedo feedback, with an albedo impact of the same order as melt ponds. Changes in SSL and implications for Arctic sea ice within a warming climate are uncertain.

     
    more » « less
  8. Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice. 
    more » « less